Diketahui matriks \(S = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} \) dan \( M = \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix} \). Jika \( f(S,M) = S^2-M^2 \), maka fungsi \( f(S+M, S-M) \) adalah…
- \( \begin{bmatrix} 4 & 20 \\ 4 & -40 \end{bmatrix} \)
- \( \begin{bmatrix} 4 & 20 \\ 4 & -30 \end{bmatrix} \)
- \( \begin{bmatrix} 4 & -8 \\ 4 & -38 \end{bmatrix} \)
- \( \begin{bmatrix} 4 & 20 \\ -4 & -40 \end{bmatrix} \)
- \( \begin{bmatrix} 4 & -8 \\ -4 & 36 \end{bmatrix} \)
(UN 2004)
Pembahasan:
Jika \( f(S,M) = S^2 – M^2 \), maka \( f(S+M,S-M) = (S+M)^2 – (S-M)^2 \). Pertama, kita cari dulu matriks (S+M) dan (S-M), yakni:
\begin{aligned} S+M &= \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} \\[8pt] S-M &= \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 6 \end{bmatrix} \end{aligned}
Dengan demikian,
\begin{aligned} f(S+M,S-M) &= (S+M)^2-(S-M)^2 \\[8pt] &= \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}^2 - \begin{bmatrix} 1 & -2 \\ -1 & 6 \end{bmatrix}^2 \\[8pt] &= \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}-\begin{bmatrix} 1 & -2 \\ -1 & 6 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ -1 & 6 \end{bmatrix} \\[8pt] &= \begin{bmatrix} 7 & 6 \\ -3 & -2 \end{bmatrix} - \begin{bmatrix} 3 & -14 \\ -7 & 38 \end{bmatrix} \\[8pt] &= \begin{bmatrix} 4 & 20 \\ 4 & -40 \end{bmatrix} \end{aligned}
Jawaban A.